Effectivity of Brauer–manin Obstructions

نویسنده

  • ANDREW KRESCH
چکیده

We study Brauer–Manin obstructions to the Hasse principle and to weak approximation, with special regard to effectivity questions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effectivity of Brauer–manin Obstructions on Surfaces

We study Brauer–Manin obstructions to the Hasse principle and to weak approximation on algebraic surfaces over number fields. A technique for constructing Azumaya algebra representatives of Brauer group elements is given, and this is applied to the computation of obstructions.

متن کامل

On the Brauer–manin Obstruction for Integral Points

We give examples of Brauer–Manin obstructions to integral points on open subsets of the projective plane.

متن کامل

Two Examples of Brauer–manin Obstruction to Integral Points

We give two examples of Brauer–Manin obstructions to integral points on open subsets of the projective plane.

متن کامل

The Brauer–manin Obstructions for Homogeneous Spaces with Connected or Abelian Stabilizer

In this paper we prove that for a homogeneous space of a connected algebraic group with connected stabilizer and for a homogeneous space of a simply connected group with abelian stabilizer, the Brauer–Manin obstructions to the Hasse principle and weak approximation are the only ones. More precisely, let X be an algebraic variety over a number field k. The variety X is called a counter-example t...

متن کامل

Descent obstructions and Brauer-Manin obstruction in positive characteristic

We prove that the Brauer-Manin obstruction is the only obstruction to the existence of integral points on affine varieties over global fields of positive characteristic p. More precisely, we show that the only obstructions come from étale covers of exponent p or, alternatively, from flat covers coming from torsors under connected group schemes of exponent p.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006